建設コンサルタントでの 普段使いのICT活用

株式会社昭和コンサルタント 加納 和幸

2

インフラDX(デジタルトランスフォーメーション)の目的

「社会経済状況の激しい変化に対応し、インフラ分野においてもデータとデジタル技術を活用して、国民のニーズを基に社会資本や公共サービスを変革すると共に、業務そのものや、組織、プロセス、建設業や国土交通省の文化・風土や働き方を変革し、インフラへの国民理解を促進すると共に、安全・安心で豊かな生活を実現すべく・・・」

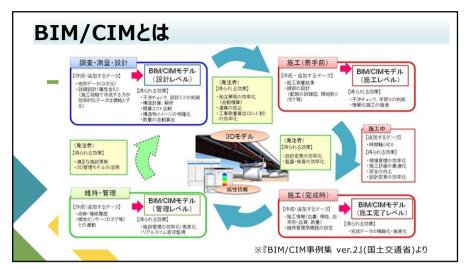
※「インフラ分野のDXアクションプラン第2版 (案)について」より

建設分野のICT活用に関連した用語

·i-Construction

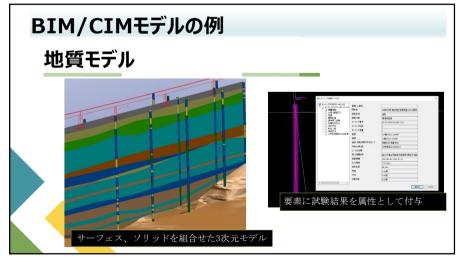
·BIM/CIM

i-Constructionとは 「現場の効率化を目標とした取組」


・起工測量、出来形管理、進捗管理にICT技術を利用する。

ヒートマップによる出来形・進捗管理、遠隔臨場など

·ICT建機の活用


自動施工・・・マシンコントロール(MC) アシスト施工・・・マシンガイダンス(MG)

6

 \neg

BIMの効果

2026年に完成するサグラダ・ファミリア

1990年代には、後200年(トータル300年)かかると言われていた

技術の進歩

3Dプリンタや3次元加工機による造形 3次元モデルによる構造解析

2026年完成(150年短縮!)

כ

10

普段使いのICT活用で業務を効率化する

ICT技術の普段使いを通して

- ・これまでできなかったこと
- ・面倒くさいこと
- 繰り返しやっていること

を解決していくことで業務の効率化とICT技術の習得を図ることが大事です。

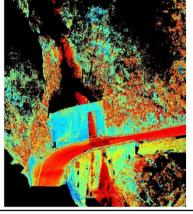
BIM/CIM,i-Constructionの目的

BIM/CIM → 公共事業全体の高度化 i-Construction → 現場の効率化

業務の効率化も図らないと 技術職員の負担が大きくなりすぎます

ICT技術を普段使いする目的は?


- ①高度化
- ②効率化


11

12

以降では、普段使いの事例を紹介したいと思います。

- ・UAV(ドローン)の活用
- ・3次元データの活用
- ・iPadの活用

オルソ画像

13

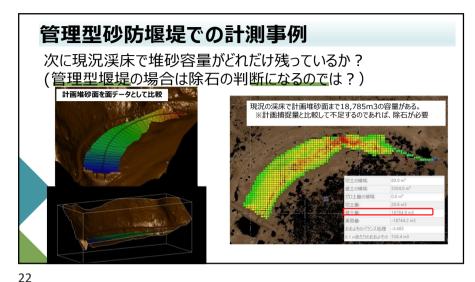
オルソ画像とは、正射投影された合成画像のことで縮尺を持ち、 ひずみを除去している。UAV写真測量の成果として得られる。

→ 平面図と重ね合わせたり、 寸法・面積計測ができる 写真地図となる。 オルソ画像の活用
被災状況の把握

オルソは自由なアングルで作成できる。
また、不要なもの(仮設防護柵や樹木など)を
消すことができる。
長さや面積を測ることができる。
長さや面積を測ることができる。


15

•



_

2次元図面と3次元モデルの違い

現場作業から図面作成まで専門技術と経験が必要

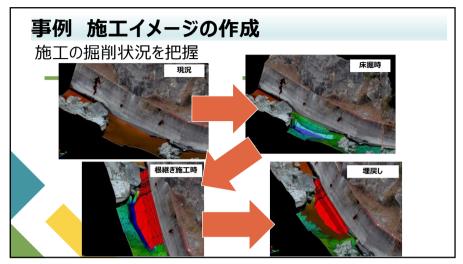
・2 次元図面

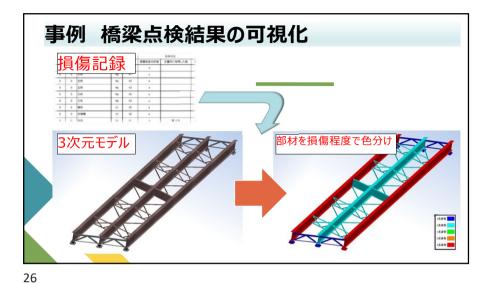
3次元のものを点と線だけで2次元で表現する。

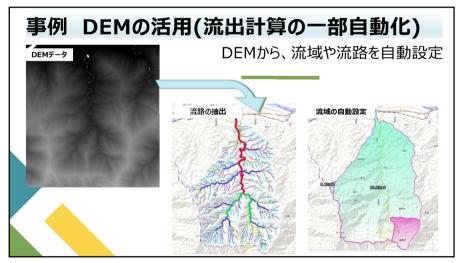
・3 次元モデル(点群)

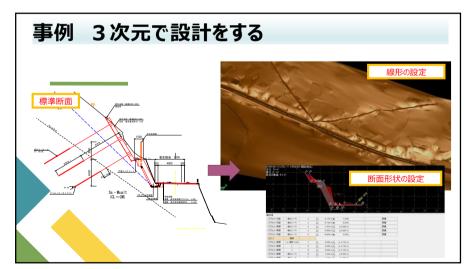
3次元形状をそのままモデル化する。

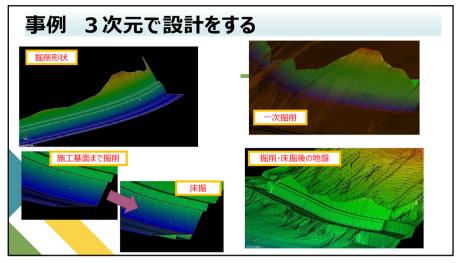
データ加工や計測計画には技術・経験 が必要だが計測そのものには不要

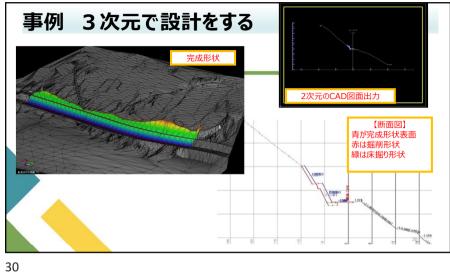


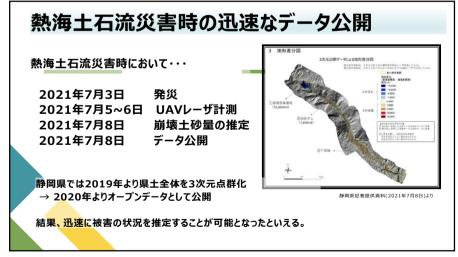

3次元データの活用


-・イメージ共有
・自動化
・3次元設計


23


_





先進県の事例 3次元点群データの公開				
	先進県で	は県土を点群化してオ	tープンデ <i>-</i>	-タとして公開
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	自治体		公開時期	公開範囲
	静岡県	VIRTUAL ZHIZUOKA	2020年	全域
	長崎県	オープンナガサキ	2023年	全域
	東京都	デジタルツイン実現プロジェクト	2023年	全域
	兵庫県	全県土の高精度3次元データ	2023年	全域
	広島県	Dobox	2023年	全域
	奈良県香芝市		2020年	市管理道路ほぼ全域
	石川県		2024年	能登地域(商用利用不可)
	和歌山県	統合型地理情報システム	2023年	県土の65%
	大阪府		2024年	山間部地形より順次

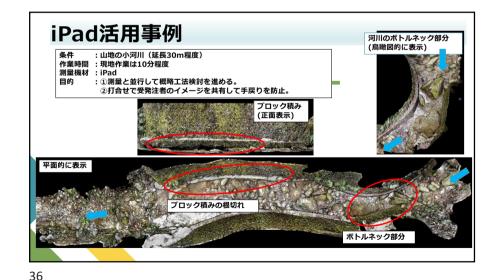
 \sim

iPadの活用

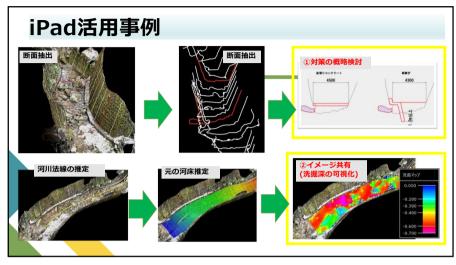
モバイル端末はデジタル技術と現実をつなぐツール

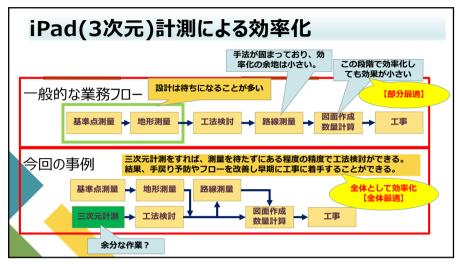
- ・データ通信
- ・アプリによる機能拡張
- ・カメラ
- ・レーザー(点群)計測

なぜiPadでレーザー計測を行うのか?


- 計測作業がiPadのみで済む。
- ・無料のアプリが利用できる。
- ・モバイルスキャン協会のマニュアルがある。
- ・災害復旧で活用した事例がある(静岡県)。

33


35


34

`

4 /